

LIBRARY OF THE
UNIVERSITY OF ILLINOIS

AT URBANA-CHAMPAIGN

no.2l2-22o

Digitized by the Internet Archive

in 2013

http://archive.org/details/linearprogrammin218baug

'£6aJ

,
lit Report No. 2l8

January 6, 1967

TTUiZ/u

A LINEAR PROGRAMMING CODE TO

DETERMINE WHETHER A BOOLEAN

FUNCTION IS A THRESHOLD FUNCTION

by

Charles R. Baugh FEB 2 b67

Report No. 2l8

A LINEAR PROGRAMMING CODE TO
DETERMINE WHETHER A BOOLEAN

FUNCTION IS A THRESHOLD FUNCTION

by

Charles R. Baugh

January 6, 1967

Department of Computer Science
University of Illinois
Urbana, Illinois 6l801

This work was submitted in partial fulfillment for the degree of

Master of Science in Electrical Engineering under the direction
of Professor S. Muroga, January 19^7

•

Ill

ACKNOWLEDGMENT

The author wishes to express his appreciation to

Professor S. Muroga, Department of Computer Science, who graciously

offered many suggestions and comments . His advice was of great

benefit to the preparation of this thesis.

Thanks are also expressed to Dr. T. Tsuboi without whose

close cooperation the programming of the linear programming code

would have been considerably more difficult.

IV

TABLE OF CONTENTS

Page

INTRODUCTION 1

COMPUTER IMPLEMENTATION 6

PROGRAM DESCRIPTION 10

LIST OF REFERENCES Ik

APPENDIX. SUBROUTINE DESCRIPTIONS 15

INTRODUCTION

An interesting subclass of Boolean functions are threshold

functions. Muroga, Toda, and Takasu devised a test which incorporated

linear programming techniques to determine whether a switching function

1*
is a threshold function ; and if so, its structure. If we consider

only positive self-dual threshold functions of exactly nine variables

excluding functions with permuted variables, we can be assured of dis-

covering all eight variable threshold functions. The advantage of

dealing with these self-dual threshold functions is that as many as 18

eight variable threshold functions can be enumerated from one of these

2
nine variable functions.

Thus the problem is to determine all nine variable self-dual

2
threshold functions. Through various reduction techniques the set of

all nine variable Boolean functions is reduced to 319>12^ possible

self-dual threshold functions. With such a large number of functions

to check, it is necessary to have a very fast and efficient linear

programming code

.

A set of inequalities characterize each function and are of

the following form:

See List of References

i
' w ' + a ' w ' +

1,1 1 1,2 2
+ al,9V -

1

a ' w ' +
m,l 1

w
i'

- V
w.

+ a ' w ' > 1
m,9 9 -

>

>
(1)

Wg' - w
9

' >

where a .
.

' = + 1 for all i and j

.

ij -

With the nine variable functions m ranges from 1 to 23 inclusive.

These constraints along with the object function of

min(w ' + w ' + . . . + w '

)12 y
(2)

5constituted the linear programming problem. However, Gabelman and

k
Winder reformulated the problem by substituting w. for w.' - w! ,11 l-l

for i = 1,„..,8 and w for w '. Using this substitution technique,

the problem becomes the following:

min(w + 2w + 3w + . . . + 9wQ) (3)

while satisfying

* Our programming results yield 23 as maximum m,

a'
1
w1+ (a^' + a

12
')w

2
+ ...+ (a

il
+ a' 2+ ... + a'^ > 1

a
ml

W
l

+ (a
ml'

+ V'K + -• + (a
ml + *i&

+ ~ '
+ ^\ ± ±

'

i *
Note that the last nine inequalities of (1) are simply w. > for

i = 1,...,9 an(3- will not be explicitly present in the simplex method.

For clarity let a. . =) a ' with (h) "becoming
ij Z_j 1 ^

k=l

a
il
w
l + • • • + a

19
w
9
> 1

(5)

a
n
w_. + . „ . + a ^w^ > 1

ml 1 m9 9 —

and w. > for i = 1, .

.

. ,$.

Since all of the coefficients of the object function (3) are

non-negative and the inequalities of (5) are all in the "greater than

or equal" form, the dual of the problem is

:

max(v n + v,.. + „ . . + v) (6)12 m

while satisfying

a v + . . . + a v < 1
11 1 ml in -

a v.. + . . . + a v < 2
12 1 m2 m —

(7)

a v + . . . + a v <
19 1 m9 m —

These inequalities are useful for reducing the number of inequalities
in the first m inequalities of (l). In Winder's formulation, this
advantage was not fully used.

where v. > for i = 1... . . ,m.
1 — '

The linear programming problem in this form has an initial feasible

solution which eliminates the need for artificial variables and reduces

the amount of computation and as a result reduces the time necessary

to arrive at the solution. Also when this dual problem is solved by

the simplex method, the solution of the primal problem as well as a

solution to the dual problem is obtained. In other words, the values

of w.. , . . . ,w_ are located in their respective positions of b - .,_ . . .

1' ' 9 m+1, 10

b _ .. of (8a).
m+9, 10 v

'

For clarity write the simplex tableau as:

i . . . l ...
1 . . . m m+1 . . . m+9

B
l

B
9

C
B1

C
B9

b
oi

b
09

\l • ' • V

b
19 ' ' •

b
m9

b . . . b _ _
m+1,1 m+9

A

m+1, 9 ' m+9,

9

Vio b
I,10

b
mlO

b
m+l,10 . . .

b
m+9,10

(8a)

Thus the initial tableau is

m+1

m4 9

1

m m+1

l

ll

22.
-1

a
im 1

m9
O

m+9

o
(8b)

An iteration of the simplex method is performed by trans-

forming each tableau entry. The conventional transformation of the

tableau entries b . . of (8a) is formulated by using a column of (8a)

as a reference column y and an entry of y as a pivot y ; i.e.

b is replaced by "°

1 r'
b

st^J^ t
for i=0 > • • ,i-l,i+l, . . .,m+9

and j=l,... ,10 (9)

and b is replaced by b /y for j=l,...,10.

Or rewriting we get

b
ij

= l\?l ' Vi]/y
i

for i=0,...,i-l,i+l,...,m+9

and j=l,, . .,10 (10)

and ba
= bi/y ^

for o=1^--AO.

COMPUTER IMPLEMENTATION

NICAP, ILLIAC II assembly language, is the language in which

the linear program code was written. The features of this machine which

are particularly appealing are its word structure and control unit.

The word is broken into a kk bit mantissa and a 7 bit exponent which

makes ILLIAC II very suitable for numerical problems

.

The central control unit is divided into an advanced control

which handles indexing functions and delayed control which supervises

the accumulator. The advantage of the dual control is that one can be

executing an advanced control and delayed control instruction simul-

taneously. Therefore one can increase the speed of the code by appro-

priate intermixing of advanced and delayed control instructions. Also

the delayed control execution of multiplication and division is by-

passed if the accumulator contains zero. Since the problem often

contained zeros, the computation time was reduced.

The last feature is the bank of fast memory in which inter-

mediate arithmatic results could be stored and retrieved very quickly.

The typical advanced control instruction including store and access of

fast memory is 1 u second. Typical timing for core access is 1.8 u

seconds, for multiplication 6.6 u seconds, and for addition 3.3u seconds.

Making use of the fact that the coefficients of the inequali-

ties of (7) are all integers, we were able to eliminate time consuming

divisions which introduce and propagate round off error. This is done

by putting all entries of the tableau over a common denominator y and

7

then keeping the numerators in the tableau and the denominator in a

separate location.

This procedure necessitated the use of the transformation

formulae of (10) rather than (9)- In (10) we can keep the denominator

y separate. Thus the denominator at any given iteration of the

simplex method is the product of each of the y/s of the previous

iterations.

However, if no provision is made to scale down the denominator

and the tableau entries, accumulator overflow will occur since the

represented number will be the ratio of two very large members. From

the expressions for the numerator entries of the transformed tableau

(lO), one can see that the magnitude is a function of the entries of

the column y which contain the pivot. Thus keeping the y entries as

small as possible yet still integer will prohibit the b. . entries from

growing as rapidly. The following simple pseudo common divisor routine

was incorporated to prevent overflow and to keep the increased compu-

tation time small. First the value of the smallest, in absolute value,

of the m+1 y column entries, y was found. The largest in absolute
K.

value of y , y^/2, ud^> ^v/^ ^J^ wnich was "both an integer and a

common divisor of all y column entries was used as the greatest common

divisor of the y column. By this scheme the mantissa of the tableau

entries never became larger than the kk bits and the magnitudes never

exceeded the capacity during the computation.

A consideration of the number of multiplications per iteration

needed for the simplex method and the revised simplex method will show

which is superior for our class of problems. For the simplex method

8

there are 10(m+9)+9 entries in the tableau with 2 multiplications for

each entry. This amounts to 20m + 198 multiplications. For the

revised simplex method the number of multiplications is: 10m to

calculate the (z-c)'s of the non-basic variables; 90 to calculate the

pivot column entries; and 220 to transform the basis for a total of

10m + 310- The following table shows the comparison of the two methods

Number of Multiplications for One Iteration for a

Problem With m Constraints

SIMPLEX
REVISED
SIMPLEX

m 20m + 198 10m + 310

2 238 330
3 258 340
4 278 350
5 298 360
6 318 370
7 338 380
8 358 390

9 378 4oo
10 398 410

11 4i8 420

12 438 430
13 458 440
14 478 450
15 498 460
16 518 470
17 538 480
18 558 490

19 578 500
20 598 510

Thus the revised simplex method is more efficient when m is greater

than 11.

In our problems m averaged 4.91 which is well below the

approximate breakeven point of 11.2. However, since it would be

9

convenient to do some post-linear programming operations on the

coefficients, the revised simplex method was chosen so that the co-

efficient matrix would remain unchanged.

With this code we solved 319, 12k linear programming problems

in 11 hours and ~$k minutes with 1,^66, ^Ok iterations using ILLIAC II.

Thus the average problem took 2.17 n\ seconds with each iteration

consuming kk2 u seconds. This total time includes some pre- and

post-linear programming operations which consumed only about 10$> of the

time. The linear programming code itself used 280 locations of

instructions and 262 locations for data storage.

This thesis is a part of the joint research work with

Professor S. Muroga and Dr. T. Tsuboi. The problem statement of the

joint research work and the results produced from the computer program

of this thesis will be published elsewhere.

10

PROGRAM DESCRIPTION

PROBLEM: LNPG1 is a linear program which

max / ex.

i=l

while satisfying

l

l,l
l

l,n

a . . . a
m,l m,n

~

x
l V

. • > •

• • •

X
n

b
m

(11)

and x. > for i = 1, ...,n

where n < 23 and m < 9- All of the real numbers c's, a's, and b's

must be integers. The revised-simplex method as outlined in Linear

Programming by George Hadley is the method employed. The procedure

requires that [A] contain a unit matrix in the last m columns or that

a full set of artificial variables be appended.

LATA FORMAT: The coefficients a. . and constants b. and c. must be
i;J i i

in one area in core memory and in the following form:

'i,i
•

m,l

a b,
l,n 1

a b
m,n n

c
n

(12)

11

The entries of the matrix in (.12) must be stored by row in sequential

core memory locations . At the completion of the linear programming

calculations the entries of matrix in (12) will be unchanged.

MEMORY DESTROYED: FO, Fl, F2, F3, M3, and accumulator.

PROGRAM LENGTH; 280
1Q

or 428
g

COMMON MEMORY; None

ERASABLE MEMORY: 262
1Q

or ^06
Q

OUTPUT: The program calls an external subroutine 10 which must be

supplied by the user . The 10 routine is called after every iteration

of both Phase I and Phase II of the revised simplex method. The user

must return control back to the program by a JLH M3 with all modifiers

except M3 unchanged. The user will be given the following information:

M3 i Return jump

Uk-i Count of Phase I iterations

M5: Count of Phase 1 plus Phase II iterations

M8: Number of equalities in (ll)

M9« Number of variables in (ll) plus one

M10; Location of a of (12)
1,1

Mil: First location of basis (stored by column)

M12 : First location of the two additional equalities necessary

for the revised simplex method (stored by row)

12

M13: l^th bit (sign bit) is 1 if Phase I is completed,

12th bit is 1 if Phase II is completed, 11th through

1st bit are the same as the user's Mil when LNPG1

was originally called.

Ml 5 : Location of denominator of all basis entries.

NO SOLUTION: If the linear program discovers that the problem has no

finite solution or no feasible solution, then it calls a subroutine

called ER0R. This subroutine must be supplied by the user and control

need not be returned to LNPG1. If control is returned to LNPG1 by a

JLH M3
;

it will return control to the user's routine which originally

activated LNPG1. The user is given the same information as he was

in subroutine 10 with the addition of

Ml: is if no feasible solution and is -1 if no finite

solution.

All other modifiers are the same as they were when the call to LNPGI

was made.

ACTIVATION OF LNPG 1 : The modifiers must contain the following

information

:

M8: Number of equalities of (ll)

M9: Number of variables plus one of (ll)

M10: Location of a of (12)

Ulk: Negative if no artificial variables added;

Positive if full set of artificial variables added.

13

All other modifiers can contain any information the user desires. The

call to LNPG1 is by a

CALL LNPG1

statement in NICAP.

Ik

LIST OF REFERENCES

1. Muroga, Saburoj Toda, Iwao; Takasu, Satoru. "Theory of Majority
Decision Elements," Journal of the Franklin Institute , Vol. 271,
No. 5, May 1961.

2. Muroga, Sahuro. Lecture Notes for Threshold Logic Course, Depart-
ment of Computer Science, University of Illinois, 1966.

3- Gabelman, I. J. "The Functional Behavior of Majority Elements,"
Ph.D. Dissertation, Electrical Engineering Department, Syracuse
University, Syracuse, New York, 1961.

k. Winder, R. 0. "Enumeration of Seven-Argument Threshold Functions,"
IEEE Transactions on Electronic Computers , Vol. EC-14, No. 3>
June 1965.

5. Hadley, George. Linear Programming, Addison Wesley, 1962.

15

APPENDIX

SUBROUTINE DESCRIPTIONS

LNPG1 first initializes itself and then jumps to an internal

subroutine called LP which is the main control of the revised-simplex

method. Thus LNPG1 initializes the basis and establishes the two

additional constraints for Phase I and Phase II of the revised-simplex

procedure as outlined in Chapter 7 of Linear Programming by George

Hadley

.

5

SUBROUTINES: (Constitute LNPGl)

INTERNAL

LP

FASI

FASH

FASIIA

BXA

TRANS

EXTERNAL (Supplied by user)

10

ER0R

DATA: The basis data array includes: (l) the subscripts of the variables

which make up the present basis; (2) the inverse of the matrix formed

by the columns of (ll) which correspond to the variables constituting

the basis; (3) the values of these basic variables; and (k) the control

16

column y which corresponds to the last variable introduced into the

basis. The basis is stored by column and has the following format:

[B #'s]

01

>11

m+1,1

xi

b X yo

CD

o,m+l o o u
«H -P O

X
l yl

ipt

o

les

s
qt-w

. .
bscr riab

3rd

m+1,m+1 m+1 ym+l
3 cd a
CO > -H

(13)

Initially (first basis);

(a) x
q

= 0, x
±

= -

m

b . and x. = b . ,
i l l-l

2,...,m+1;

i=l

(b) variable numbers correspond to the last m subscripts of the

variables in (ll) or to n+1 through n+m if artificial

variables are added;

and (c) the first m+1 columns of (13) are
m+1

where 0' = [0, . . .,0]

and I , is a unit matrix of rank m+1,
m+1

The coefficients for the additional two rows of (ll) necessary

for the revised simplex method are stored sequentially by row in an

array A12 as follows:

- c - c
in

m

"li 2i
a .

ni

i=l 1=1 1=1

= [A12] (Ik)

Both (13) and (lU) are data arrays in erasable memory. There-

fore care must be exercised if the user is also using erasable storage.

17

LP: Determines whether a full set of artificial variables are needed

and branches to Phase I or Phase II depending upon the necessity of

artificial variables. Upon the completion of Phase I it enters

Phase II. If, however, a feasible solution does not exist, control is

transferred to subroutine ER0R which has been supplied by the user. At

the completion of Phase II control is returned to the user's calling

routine. If an unbounded solution is encountered control is given to

the user's subroutine ER0R once again, Control is transferred to user's

subroutine 10 at the end of each iteration of both Phase I and Phase II.

FASI, FASH, and FASIIA: This routine with its three entry points FASI,

FASH, and FASIIA calculates the variable which is to be introduced

into the basis. If a feasible solution does not exist, a flag is set

so that LP can detect the condition. If Phase I is completed another

flag is set for LP.

FASH serves the same purpose as FASI except that it deals

with Phase II instead of Phase I. Upon completion of Phase II a flag

is set to signal LP. If the solution is unbounded another flag is

set for LP.

Since FASI and FASH are so similar, the main work of both of

these routines is handled by FASIIA.

BXA : This short routine conducts the multiplication of a row of the

basis of (13) with the column of the modified coefficient matrix
A12
A

which consists of (ll) and (lk) . However, the product of b. with the

first entry of
A12
A

is not included in the product. The product is

18

[b. n t.« . . . *b. -,] with the second through the last entries of the
ll i2 i,m+l J

A12
column of .

TRANS: The routine is divided into two parts. After calculating a

column vector y by which elementary row operations are conducted on

the basis, the section of the pseudo greatest common divisor (described

below) is entered. Since one of the main objectives of the program

is to maintain numerical accuracy, the y column is divided by a pseudo

greatest common divisor. As the values of all the constants are

integers a very specialized procedure was devised:

Step 1. y = min|y.|, i = 0, ...,m+l

2. Calculate yR , y^/2, y^/3, YkA, Y^/5

3. Among the constants of step 2 select the largest

one which is both an integer and common divisor

of all y. '

s

J
i

k. Divide all entries of y by value determined in

step 3.

The second section of TRANS transforms all but the last two

columns of (13) by the formulae:

d replaced by [d y - d y]
— for i f I

ij Id I II 1 y
| (15)

and d. . replaced by d„./y„ for i = i
ij iy j

z

where y corresponds to min (x /y) for y > and r = 0, ...,m+l.

Since the d. . 's and y .

' s are all integers, (d. ,y . - y .d„ .) will be

integer. If one does not divide "by y , the entries of (13) will contain

19

integers. Thus upon completion of every iteration y is stored

separately and the numerators of (15) are stored in the basis. The12k
division of all the entries of (13) hy the product y y . . . y

is delayed until the end of Phase II.

IL

